

THOR Cloud Thickness from Offbeam Lidar Returns

R. F. Cahalan¹, M. McGill¹, J. Kolasinski¹, T. Várnai², K. Yetzer³

¹ Laboratory for Atmospheres, NASA GSFC, ² JCET, UMBC, ³ Raytheon SSAI

Introduction

Lidar pulses penetrate clouds only up to $\tau \approx 2$, as distinct laser pulse spreads into a diffuse halo that lies outside the narrow field-of-view of conventional lidars.

New lidars built for halo observations:

THOR: on aircraft flying above clouds (NASA GSFC) ISL: on aircraft flying inside cloud (U. of Colorado)

WAIL: on ground (LANL)

THOR instrument

THOR observes
direct backscatter +
7 concentric rings in halo

Technical specifications:

Wavelength: 540 nm Pulse rate: 1 kHz Pulse energy: 225 μ J Range-resolution: 30 m

Signal of outer rings is:

- delayed (photons need time to travel to outer rings)
- spread out (some photons meander more than others)

Photo of THOR in NASA P-3B aircraft

Cloud retrievals

Basic idea

Thick cloud: Thin cloud: large halo small halo (photons travel far) (photons escape)

Approach

Compare observations to tables created by 3D Monte Carlo radiative transfer simulations

Simulations use a variety of cloud models, and so retrievals yield information on internal structure

Volume extinction coefficient

THOR validation campaign

ARM SGP site, March 2002

THOR on board NASA P-3B aircraft

March 19: first-ever THOR flight

March 20: test flight March 24: clear-sky flight March 25: cloudy-sky flight

Validation of physical thickness retrievals

Compares THOR's halo-based cloud thicknesses to $\Delta Z = Z_{\text{cloud top}}(\text{THOR}) - Z_{\text{cloud base}}(\text{ARM instruments})$

Flight path of March 25 flight

RGB composite of THOR data

ARM Micropulse Lidar data revealing cloud base

revealing cloud base

(way) 1.5
1.0
0.0
4 5 6 7 8
Time (UTC, hours)

RGB composite of THOR data for Stratus cloud

A comparison of cloud thickness values for six segments of thick stratus (seen through thin Cirrus)

Conclusions

- •THOR lidar gives new information on the **physical** thickness and structure of optically thick clouds
- •ARM SGP site provided excellent data for validating THOR's cloud thickness retrievals